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Abstract. In this paper we propose a new multi-dimensional method to solve unconstrained global
optimization problems with Lipschitzian first derivatives. The method is based on a partition scheme
that subdivides the search domain into a set of hypercubes in the course of optimization. This parti-
tioning is regulated by the decision rule that provides evaluation of the "importance" of each generated
hypercube and selection of some partition element to perform the next iteration. Sufficient conditions
of global convergence for the new method are investigated. Results of numerical experiments are
also presented.
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1. Introduction

In this paper we consider the problem of finding the global (or absolute) minimizer
for a multivariate function f(y), i.e.,

minf(y); y 2 D; (1.1)

where the domain of search D is a hypercube,

D = fy 2 RN : ai 6 yi 6 bi; 1 6 i 6 Ng; (1.2)

RN is the N -dimensional Euclidean space and the objective function f(y) to be
minimized may be multiextremal. These problems are of substantial interest – see,
for example, Archetti and Schoen (1984), Dixon and Szegö (1978), Horst and
Pardalos (1995), Horst and Tuy (1990), Pardalos and Rosen (1990), Pintér (1996),
Rinnooy Kan and Timmer (1989), Strongin (1978), Törn and Žilinskas (1989).

Generally any estimates of the global minimizer of the function f(y) are based
on some assumptions about the properties of the function behaviour. One of the
fruitful approaches is using the idea that the function f(y) satisfies the Lipschitz
condition

jf(y1)� f(y2)j 6 Kjjy1 � y2jj for any y1; y2 2 RN ; (1.3)
? This work was supported by RFBR Grant N 95-01-01073.
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where K is a constant. In the framework of this approach a number of well-known
global optimization methods are proposed (see, for example, Evtushenko (1971),
Hansen et al. (1992), Piyavskii (1972), Shubert (1972), Strongin (1978)).

In recent years the above mentioned approach has been extended to take into
account some additional information about the functions to be minimized. For
instance, Hansen et al. (1989), Gergel (1992), Breiman and Cutler (1993), Bari-
tompa (1994) considered the functions with Lipschitzian first derivatives, i.e. sat-
isfying the condition

jf 0(y1)� f 0(y2)j 6 Ljjy1 � y2jj for any y1; y2 2 RN ; (1.4)

where f 0(y) is the first partial derivative of f(y) with respect to the direction y1y2.
Choosing any iteration point in the optimization process, these methods use the
values of the first derivatives of the objective function in addition to the function
values. This additional search information is used to increase the efficiency of
finding the global minimizer.

In this paper we discuss a new method for minimizing multiextremal functions
for which the first derivatives satisfy the Lipschitz condition (1.4). This method
generalizes the univariate global optimization technique given in Gergel (1992) to a
multi-dimensional case. The extension of the original algorithm is based on the idea
of reducing the initial multi-dimensional optimization problems to equivalent one-
dimensional problems using the scheme given in Pintér (1986) (some alternative
schemes for such reduction are reviewed, for example, in Butz (1968), Evtushenko
and Potapov (1994), Meewella and Mayne (1989), Strongin (1978)).

Optimization problems considered in this paper are rather specific. In contrast
with various known methods (see, e.g., Breiman and Cutler (1993), Baritompa
(1994)), we assume that the value of the Lipschitz constant may be unknown a pri-
ori. Similar problems (in the case when the condition (1.3) is used instead of (1.4))
have been investigated in the framework of the information approach to global opti-
mization (see Strongin (1978)). Such problems are also studied in Sergeyev (1995)
where the major attention was dedicated to estimating local Lipschitz constants.

If the problem belongs to this type then any guaranteed bounds for the function to
be minimized can not be determined. As a result, the general approaches developed
in Horst and Tuy (1990), Pintér (1996) cannot be used in this case to establish
convergence properties of global optimization techniques. That is why to analyse
the proposed method we have to carry out some extended investigations.

For the sake of simplicity we present our approach in two successive steps.
Initially the one-dimensional case is considered and Section 2 contains the general
scheme of the method, a detailed description of the univariate version of the
method and some results of numerical experiments. Then we apply this scheme
to the multi-dimensional case (Section 3). First we briefly discuss how to extend
the univariate optimization technique to a multivariate one and then provide the
algorithmic scheme of the method. Finally, we investigate convergence properties
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of the method (Section 4) and describe the results of numerical experiments (Section
5).

2. Algorithm for the One-Dimensional Case

In this Section the objective function is a univariate differentiable function f(x),
the domain of search D is an interval [a; b] and the condition (1.4) is satisfied with
an unknown constant L.

APPROACH. Let us start with a brief description of the univariate global opti-
mization method proposed in Gergel (1992). This method belongs to the class of
characteristical optimization algorithms (see Grishagin (1979), the related approach
presented in Pintér (1986)) and can be described as follows.

Iteration points generated by the method subdivide the initial search domain
into a set of subintervals. At any iteration, to make the next optimization step, the
method examines the "importance" of each subinterval and selects a point for the
next function value evaluation within the most "important" subinterval. To solve
the optimization problem successfully the "importance" of the subinterval must
correspond to the possibility of the global minimizer being within the subinterval
(the value of importance expressed numerically is called the characteristic).

To assign characteristics for subintervals of the search domain the following
approach has been used.

As can be proved from the condition (1.4), taking into account the Taylor
expansion of f(x), limited to the second order term, the next inequality is satisfied

f(�x) > f(x) + f 0(x)(�x� x)� 0:5L(�x� x)2 (2.1)

with x; �x 2 [a; b]. It means that if for any subinterval [x1; x2] 2 [a; b] the function
values are evaluated at the interval endpoints then

f(x) > max

�
f(x1) + f 0(x1)(x� x1)� 0:5L(x� x1)

2

f(x2)� f 0(x2)(x2 � x)� 0:5L(x2 � x)2

�
; (2.2)

wherex 2 [x1; x2]. From (2.1), (2.2) we can estimate the least value of the objective
function f(x) within the interval [x1; x2] (see Figure 1)

f(x) > R[x1; x2] = f(x1) + f 0(x1)(x̂� x1)� 0:5L(x̂� x1)
2; (2.3)

where

x̂ =
�(f(x2)� f(x1)) + (f 0(x2)x2 � f 0(x1)x1) + 0:5L(x2

2 � x2
1)

L(x2 � x1) + (f 0(x2)� f 0(x1))
: (2.4)

Below the expressions (2.3), (2.4) are used to calculate the values of the interval
characteristics, but various numerical estimates of the Lipschitz constant are used
instead of L.
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Figure 1. The least value estimate of the function f(x) within the interval [x1; x2] using the
Lipschitz condition for the first derivatives.

SCHEME. The global Method using Derivative values (MD) proposed in Gergel
(1992) can be described as follows.

To start with MD, the values of the function f(x) and its derivative f 0(x) are
calculated at the points x0 = a and x1 = b (such calculations will be referred to
as trials at corresponding points). The point x(s+1), s > 1 of the next (s + 1)-th
iteration is selected in the following way:
1. Order the points x0; :::; xs of previous trials by increasing their coordinates,

i.e.
a = x0 < x1 < ::: < xi < ::: < xs = b; (2.5)

2. Compute absolute values of the slopes of the function to be minimized over
each interval (xi�1; xi), 1 6 i 6 s,

Mi = max

8>>>>>>><
>>>>>>>:

jz0i � z0i�1j

xi � xi�1

2[�(zi � zi�1) + z0i�1(xi � xi�1)]

(xi � xi�1)
2 ;

2[(zi � zi�1)� z0i(xi � xi�1)]

(xi � xi�1)
2 ;

1 6 i 6 s; (2.6)

where zi = f(xi), z0i = f(xi), 1 6 i 6 s, and xi; 1 6 i 6 s, are from (2.5);
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3. Compute an estimate of the Lipschitz constant

M = max
16i6s

Mi; m =

�
1 if M = 0;

rM if M > 0;
(2.7)

where r > 1 is the parameter of the method and Mi, 1 6 i 6 s, are from (2.6);
4. Calculate for each interval (xi�1; xi), 1 6 i 6 s, the value

R(i) = zi�1 + z0i�1(x̂i � xi�1)� 0:5mi(x̂i � xi�1)
2; (2.8)

where
mi = 0:5m(1 + (Mi=m)2); (2.9)

x̂i =
�(zi � zi�1) + (z0ixi � z0i�1xi�1) + 0:5mi(x

2
i � x2

i�1)

mi(xi � xi�1) + (z0i � z0i�1)
: (2.10)

We shall call R(i) the characteristic of the interval (xi�1; xi);
5. Find among the intervals (xi�1; xi), 1 6 i 6 s an interval with the minimal

characteristic

R(t) = min
16i6s

R(i); (2.11)

6. Execute a new trial at the point xs+1 = x̂t , where t is from (2.11) and x̂t is
calculated according to (2.10).

The algorithm stops when

(xt � xt�1) < "; (2.12)

where t is from (2.11), and " > 0 is a preset accuracy. The values

z?s = min
06i6s

f(xi); x?s = arg min
06i6s

f(xi) (2.13)

may be taken as an estimate of the global solution of the problem (1.1), (1.2).

REMARK 1. The value ofm in (2.7) presents a numerical estimate of the Lipschitz
constant. Increasing the method parameter r improves the reliability of the method
implementation (because an adequate estimate of the Lipschitz constant of the
objective function may be provided). But, on the other hand, large values of r can
be a reason for increasing the number of method iterations implemented by the
method until the stopping condition (2.12) is satisfied.

It should be noted that the value of m may overestimate the Lipschitz constant
obtained for the objective function over subintervals of the search domain (see the
related discussion in Hansen et al. (1992), Sergeyev (1995), Pintér (1996)). That is
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why the method uses a "local" estimation of the Lipschitz constant for each search
subinterval (xi�1; xi), 1 6 i 6 s, in accordance with (2.9).

REMARK 2. The characteristic R(i) from (2.8) is a lower estimate for values of
the objective function f(x) within the interval (xi�1; xi) (see Figure 1). Taking
account of (2.11) we can conclude that the point xs+1 of a new trial is taken within
the interval (xt�1; xt) containing the estimate of the smallest possible value of the
objective function f(x) over the interval [a; b].

CONVERGENCE. The convergence properties of the method are given by the
following Theorem (see Gergel (1992)).

THEOREM 1. If MD is used to solve the problem (1.1)–(1.2) and the condition
(1.4) is true, then for any accumulation point �x of the minimizing sequence fxsg
generated by this algorithm the following statements are valid:

(1) the point �x is a local minimizer if the function f(x) has a finite number of
local extrema within the interval [a; b];

(2) zs = f(xs) > f(�x); s > 1, i.e. the algorithm does not converge to points
where the function value exceeds the result of some realized trial;

(3) if there is another accumulation point x̂ of the sequence fxsg, then f(�x) =
f(x̂), i.e. a simultaneous convergence to points with different function values is
impossible. Hence, if the minimized function is not a constant then the method will
produce a nonuniform net in the interval [a; b];

(4) if at some step we obtain m > 2L , where m is from (2.7), then �x will be a
global minimizer of f(x) and, moreover, the set of all accumulation points of the
sequence fxsg will coincide with the set of global minimizers of f(x).

NUMERICAL EXAMPLE. To demonstrate the method potentialities we present
the results of minimizing the objective function (see Strongin (1978), Hansen et
al. (1992))

f(x) = sinx+ sin 10x=3 + lnx� 0:84x+ 3; x 2 [2:7; 7:5]: (2.14)

The parameter r from (2.7) and the accuracy parameter " from (2.12) have been
taken as follows: r = 1:1; " = 0:0001(b� a).

The function to be minimized is shown in Figure 2a. In Figure 2b the series
of vertical strokes indicates the trial points xi, 0 6 i 6 20, from (2.5) in which
the values of the function f(x) and its first derivative f 0(x) have been calculated
(the dark rectangle denotes the group of closely located points). In Figure 2c the
segments of the broken line connect successively (from bottom to top) the points
corresponding to pairs (xs; s); (xs+1; s + 1), where xs is the coordinate, s is the
number of trials. The total number of iterations is 21 until the stopping condition
from (2.12) is satisfied.
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Figure 2. An example of implementation of the Method using Derivative values (a) the view
of the function to be minimized, (b) the points generated by the method, (c) optimization
dynamics.

Results of more extended numerical experiments for this method are given in
Gergel and Sergeyev (1994) where some comparison with other methods are also
presented.
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3. Algorithm for the Multi-Dimensional Case

Let us consider the N -dimensional (N > 1) case. Assume that the objective
function f(y) from (1.1) is differentiable and the condition (1.4) is satisfied with
an unknown constant L.

APPROACH. We propose a method for solving multi-dimensional global opti-
mization problems that is formulated as a diagonal extension of the univariate
optimization technique described above (the approach is used for such extension
has been suggested in Pintér (1986)). Some necessary concepts and notation are
given below.

In accordance with this approach at any iteration the search domain D is subdi-
vided into several hypercubes. Let Di, 1 6 i 6 s, denote these hypercubes, �i and
�i denote the lower left and the upper right vertices of Di, 1 6 i 6 s, accordingly,
i.e.

Di = fy 2 D : �i
j 6 yj 6 �i

j ; 1 6 j 6 Ng; 1 6 i 6 s; (3.1)

where s is the number of the current iteration. To split the search domain, the
hypercubes have to be taken in such a way that

[
s
i=1Di = D; < Di > \ < Dj >= ;; i 6= j;

where < D > denotes the interior of D (the pair Di and Dj may have a common
face). It is also required that the values of the objective function and its first partial
derivatives at the points �i; �i, 1 6 i 6 s, of the current partition of D should be
calculated at previous iterations. An example of such a partition of D is depicted
in Figure 3a (trial points are denoted by bold dots).

On the basis of some partition of the search domain a multi-dimensional method
can be formulated as an univariate one. To perform an iteration, the method has
to calculate characteristics for the hypercubes Di; 1 6 i 6 s, then to choose the
hypercube which has the best (maximal or minimal) characteristic. Finally, the
chosen hypercube is used for selecting some new iteration points and then it is split
into several parts.

To describe a multi-dimensional extension of our univariate method let us denote

vi = f(�i); ui = f(�i); 1 6 i 6 s; (3.2)

v0i =

0
@ NX

j=1

f 0j(�
i)dij

1
A =�i; 1 6 i 6 s; (3.3)

u0i =

0
@ NX

j=1

f 0j(�
i)dij

1
A =�i; 1 6 i 6 s; (3.4)
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Figure 3. The method using derivative values for the multi-dimensional case (MDM): a) the
structure of the search domain partition (N = 2), b) the scheme of splitting a partition element
(N = 3).

where f 0j(y) is the first partial derivative of f(y) with respect to the j-th coordinate
of y, dij is the length of the j-th edge of Di, 1 6 i 6 s, i.e.

dij = �i
j � �i

j ; 1 6 j 6 N; 1 6 i 6 s; (3.5)

and �i is the length of the main diagonal of Di, 1 6 i 6 s, i.e.

�i = �(�i; �i) =

2
4 NX
j=1

(�i
j � �i

j)
2

3
5

1=2

; 1 6 i 6 s: (3.6)

As it can be noted, vi(ui) and v0i(u
0

i) denote the values of the objective function
f(y) and its first directional derivative with respect to the main diagonal of Di at
the points �i; �i, 1 6 i 6 s, respectively.

SCHEME. The global Method using Derivative values for the Multi-dimensional
case (MDM) can be described as follows.

First, two initial trials are calculated at the points y1;1 = a, y1;2 = b, i.e.

D1 = D; �1 = a; �1 = b; (3.7)

where the vectors a and b are from (1.2). The points ys+1;1, ys+1;2, s > 1 of the
next (s+ 1)-th iteration are selected in the following way:
1. Compute the absolute values of the slopes of the function f(y) over the hyper-

cubes Di; 1 6 i 6 s
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Mi = max

8>>>>>>><
>>>>>>>:

ju0i � v0ij

�i

2[�(ui � vi) + v0i�
i

(�i)2 ;

2[(ui � vi)� u0i�
i

(�i)2 ;

1 6 i 6 s; (3.8)

where vi, v0i, ui, u
0

i, �
i, 1 6 i 6 s, are from (3.2)–(3.6);

2. Compute an estimate of the Lipschitz constant

M = max
16i6s

Mi; m =

�
1 if M = 0;

rM if M > 0;
(3.9)

where r > 1 is the parameter of the method;
3. Calculate for each hypercube Di, 1 6 i 6 s, the characteristic

R(i) = vi + v0i�
i
� 0:5mi(�

i)2; (3.10)

where

mi = 0:5m(1 + (Mi=m)2); (3.11)

�i =
�(ui � vi) + u0i�

i + 0:5mi(�
i)2

mi�i + (u0i � v0i)
: (3.12)

4. Find among the hypercubes Di, 1 6 i 6 s a hypercube with the minimal
characteristic

R(t) = min
16i6s

R(i); (3.13)

5. Execute new trials at the points

ys+1;1 = (y
s+1;1
1 ; . . . ; ys+1;1

N ); (3.14)

ys+1;2 = (ys+1;2
1 ; . . . ; ys+1;2

N ); (3.15)

where

ys+1;1 =

�
�t
j ; j 6= l;

�t
l + �tdtl=�

t; j = l;

ys+1;2 =

�
�t
j ; j 6= l;

�t
l + �tdtl=�

t; j = l;
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and l is the number of the longest edge of Dt, i.e.

dtl = max
16j6N

dtj ; dtj ; 1 6 j 6 N; from (3.5): (3.16)

6. Subdivide the hypercube Dt into two parts

�Dt = fy 2 Dt : ��t
j = �t

j 6 yj 6 ��t
j = y

s+1;1
j ; 1 6 j 6 Ng; (3.17)

D̂t = fy 2 Dt : �̂t
j = y

s+1;2
j 6 yj 6 �̂t

j = �t
j ; 1 6 j 6 Ng; (3.18)

where t is from (3.13) and ys+1;1, ys+1;2 are from (3.14)–(3.15). Then replace
the hypercube Dt in the search domain partition by its subhypercubes �Dt, D̂t

(the scheme of such subdivision is shown in Figure 3b).

The algorithm stops when

�t
6 "; (3.19)

where t is from (3.13), and " > 0 is a preset accuracy. The values

z?s = min
16i6s

min
16j62

f(yi;j); x?s = arg min
16i6s

min
16j62

f(yi;j) (3.20)

may be taken as an estimate of the global solution of the problem (1.1), (1.2).

REMARK 3. The hypercube characteristics can be computed according to the
equivalent formula based upon the upper right boundary point of the hypercube

R(i) = ui � u0i(�
i
� �i)� 0:5mi(�

i
� �i)2; (3.21)

where �i is from (3.12) and �i from (3.6).
The convergence conditions of MDM are considered in the next section.

4. Conditions of Convergence

It should be noted that though our method has been formulated in the framework
of the partition algorithm scheme (see Pintér (1986)) but the assumption that the
Lipschitz constant of the function to be minimized is unknown prevents us from
using general convergence results obtained in Pintér (1986). In particular, in this
case one cannot propose any characteristics (a partition operator) which satisfy the
monotonicity condition (see for details Pintér (1996)). That is why to analyse the
proposed method we have to carry out some extended investigations.

LEMMA 1. For the value of �i, 1 6 i 6 s, from (3.12) the inequality

max[�i;�i
� �i] 6

1
2

�
1 +

2
r + 1

�
�i (4.1)
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is satisfied, where �i is the length of the main diagonal of the hypercube Di,
1 6 i 6 s, from (3.1).

Proof. From (3.8) it follows that

�(ui � vi) 6 �v0i�
i + 0:5Mi(�

i)2:

Taking into account (3.12), we shall get

�i 6
(u0i � v0i)�

i + 0:5(mi +Mi)(�
i)2

mi�i + (u0i � v0i)
=

= �i

 
1 �

0:5(mi �Mi)

mi + (u0i � v0i)=�
i

!
6 �i

�
1 �

0:5(mi �Mi)

mi +Mi

�
=

= �i

�
1 �

0:5(1�Mi=mi)

1 +Mi=mi)

�
:

From (3.9), (3.11),

�i 6 �i

�
1 �

0:5(1 � 1=r)
1 + 1=r)

�
=

1
2
(1 +

2
r + 1

)�i:

The inequality,

�i
� �i 6

1
2
(1 +

2
r + 1

)�i

can be shown similarly.

LEMMA 2. Let �y be a limit point (a point of accumulation) of the sequence fysg.
Then for any other limit point ŷ, it follows that

f(�y) = f(ŷ): (4.2)

Proof. As �y is a limit point and Lemma 1 is true then a sequence of hypercubes
Dj(s) should exist so that

�y 2 Dj(s) and lim
s!1

�j = 0; (4.3)

where �j is from (3.6). As a result

lim
s!1

R(j(s)) = f(�y); (4.4)

Then for any � > 0 there exists an iteration p > 1 so that the inequality

f(�y)� � 6 R(j(s)) 6 f(�y) + � (4.5)

is valid if s > p.
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Now let us assume the contrary, i.e. that the condition (4.2) is not true. Without
loss of generality, let

f(�y) < f(ŷ) (4.6)

In this case any hypercube Dl with

ŷ 2 Dl and R(l) > f(ŷ)� �; (4.7)

where � is from (4.5) and

� = (f(ŷ)� f(�y)=2 (4.8)

cannot be chosen by MDM as the hypercube with the minimal characteristic (see
(4.5)–(4.8)). From (3.13)–(3.16) it follows that if s > p then new trial points will
not fall within such hypercubes. As a result (4.3)–(4.4) cannot be obtained for ŷ,
but this contradicts the fact that ŷ is a limit point.

Thus the condition (4.2) must be true.

THEOREM 2. Let fysg be the sequence generated by MDM in the course of
solving the problem (1.1)–(1.2) and assume that the condition (1.4) is satisfied. If
at some iteration p > 1 for the value m from (3.9) the inequality

m > L; (4.9)

where

 =

�
2(r + 1)
r � 1

�2 �K
L"

�
3r + 5
r + 1

�
+ 1

�

(K is the Lipschitz constant from (1.3), " is from (3.19), r is from (3.9)) is true,
then any point of the absolute minimum y? is a limit point of the sequence fysg.
Moreover, any limit point �y of this sequence will be a global minimizer of f(y).

Proof. Initially we shall prove that if (4.9) is true then

R(i) 6 f(y) (4.10)

for any y 2 Di, 1 6 i 6 s. Let �i be the distance between �i and y, i.e.

�i = �(�i; y) =

2
4 NX
j=1

(yj � �i
j)

2

3
5

1=2

:

From (3.10)

R(i) = vi + v0i�
i
� 0:5mi(�

i)2 = vi �K�i
� 0:5L(�i)2 +Qi;

where

Qi = v0i�
i +K�i

� 0:5mi(�
i)2 + 0:5L(�i)2:
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Taking into account the Taylor expansion of f(y) at �i it follows that (4.10) is true
if Qi 6 0. Let us consider a case when this inequality is valid.

From (4.1) we can conclude

Qi 6 K(�i +�i)� 0:5mi(�
i)2 + 0:5L(�i)2

6

6 K�i

�
r + 3

2(r + 1)
+ 1

�
� 0:5

"
mi

�
r � 1

2(r + 1)

�2

+ L

#
(�i)2: (4.11)

From (4.11) it can be shown that Qi 6 0 if

mi > 2
�

2(r + 1)
r � 1

�2 � 1
�i

�2 �
0:5K�i 3r + 5

r + 1
+ 0:5L(�i)2

�
>

>

�
2(r + 1)
r � 1

�2 �K
L"

3r + 5
r + 1

+ 1
�
L

(the last inequality follows from �i
> " ).

Now let us prove that y? has to be a limit point of the sequence fysg.
Assume the contrary, i.e. y? is not a point of accumulation. Then there will exist

a number q > 0 such that for all iterations l > q trials will not fall in the hypercubes
Di such that y? 2 Di. But in accordance with (4.9), (4.10)

R(i) 6 f(y?) (4.12)

if s > max(p; q). On the other hand, for any limit point �y it follows (4.3), (4.4). But
f(�y) > f(y?) and (4.12) contradicts to (4.4). Then our assumption is not true and
the point y? of absolute minimum of f(y) is a limit point of the sequence fysg.

The fact that any limit point �y has to be a global minimizer follows immediately
from Lemma 2.

REMARK 4. The coefficient  from (4.9) can be written in a simple form for the
range of large values of the method parameter r

 > + = 4(1 + 3K=L"):

MODIFICATIONS. To provide additional convergence properties for MDM we
shall consider some modifications of the rules (3.8), (3.10)–(3.12).

Let us extend the expressions (3.2)–(3.6) for any two points p; q 2 D:
- the distance between p and q is equal to

�(p; q) =

2
4 NX
j=1

d2
j(p; q)

3
5

1=2

(4.13)

where dj(p; q) is the difference between the j-th coordinates of p and q, i.e.,

dj(p; q) = qj � pj; 1 6 j 6 N: (4.14)



SOLVING PROBLEMS WITH LIPSCHITZIAN FIRST DERIVATIVES 271

Instead of (3.3)–(3.4) now we calculate the values

�v0 =

8>><
>>:

"X
i2I

f 0i(p)di(p; q)

#
=�(p; q); if jIj > 1;

min
16i6N

[f 0i(p)sign(di(p; q))]; if jIj 6 1;
(4.15)

�u0 =

8>>><
>>>:

2
4 X

j2J

f 0j(q)dj(p; q)

3
5 =�(p; q); if jJ j > 1;

max
16j6N

[f 0j(q)sign(dj(p; q))]; if jJ j 6 1;
(4.16)

where

I = fi : 1 6 i 6 N; f 0i(p)di(p; q) < 0g;

J = fj : 1 6 j 6 N; f 0j(p)dj(p; q) > 0g;

and jIj (jJ j) denotes the number of elements of the set I (J), sign(x) denotes the
sign of x. As a result of calculations, �v0 (�u0) in (4.15)–(4.16) contains the smallest
(the largest) value of the first directional derivative of f(y) with respect to any
direction

�py such that (yj � pj)dj(p; q) > 0; 1 6 j 6 N;

(�qy such that (yj � qj)dj(p; q) > 0; 1 6 j 6 N)

at the point p (q), where dj(p; q), 1 6 j 6 N , are from (4.14).
The modification the MDM is formed by the following rules.

Modification 1. The formula

Mi = max

8<
:
M(�i; �i);
M(�i; y?s); y

?
s 6= �i;

M(y?s ; �
i); y?s 6= �i;

(4.17)

where y?s is from (3.20) and

M(p; q) = max

8<
:
j�u0 � �v0j=�(p; q);

2[�(u� v) + �v0�(p; q)]=�2(p; q);

2[ (u� v)� �u0�(p; q)]=�2(p; q);
(4.18)

has to be used instead of (3.8) for

i 2 I?s = fi; 1 6 i 6 s : y?s 2 Dig: (4.19)

Modification 2. The formula

R(i) = min

8<
:
R(�i; �i);
R(�i; y?s); y

?
s 6= �i;

R(y?s ; �
i); y?s 6= �i;

(4.20)
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where mi is from (3.11) and

R(p; q) = v + �v0�̂ � 0:5mi�̂
2; (4.21)

�̂ =
�(u� v) + �u0�(p; q) + 0:5mi�

2(p; q)

mi�(p; q) + (�u0 � �v0)
; (4.22)

has to be used instead of (3.10) for the case (4.19).

REMARK 5. The hypercube characteristics R(p; q) from (4.21) can be computed
according to the equivalent formula based upon the upper right boundary point of
the hypercube

R(i) = u� �u0(�(p; q)� �̂)� 0:5mi(�(p; q)� �̂)2; (4.23)

where �̂ is from (4.22) and �(p; q) is from (4.13).
We shall denote the multi-dimensional method combined with (4.17)–(4.22) as

MDM1.

THEOREM 3. Let the point �y be a limit point of the sequence fysg generated by
MDM1 in the course of solving the problem (1.1), (1.2). Then the function values
at any iteration point cannot be less than f(�y), i.e.

f(ys;j) > f(�y); s > 1; 1 6 j 6 2:

Proof. Assume the contrary, i.e. the value

f(yp;j) < f(�y)

has been obtained at some iteration p > 1. As a result the minimum function value
f(y?s) from (3.20) is also less than f(�y), i.e.

z?s = f(y?s) < f(�y) (4.24)

If s > p, then the rules (4.15)–(4.16) provide that there exists a hypercube Dl,
1 6 l 6 s, that contains the point y?s and

�v0(�l; y?s) 6 0 or �u0(y?s ; �
l) 6 0:

In both cases the characteristic of Dl calculated in accordance with (4.21) or (4.23)
is less than z?s , i.e.

R(l) < z?s (4.25)

Thus from some iteration s > p there exists a hypercube which has its characteristic
less than the characteristics of the hypercubes containing the point �y (see (4.4),
(4.24), (4.25)). As a result �y cannot be a limit point. This fact contradicts the
assumption of the Theorem.
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THEOREM 4. Let the point �y be any limit point (a point of accumulation) of the
sequence fysg generated by MDM1 in the course of minimization of the bounded
function f(y), y 2 D. If the point �y belongs to the interior of D then �y will be a
local minimizer of the function f(y).

Proof. Let us assume the opposite, i.e. that the limit point �y is not a local
minimizer. Then the first partial derivative of f(y) with respect to some coordinate
of y is not equal to zero (f 0i(�y) 6= 0 for some i, 1 6 i 6 N ). Otherwise, the point �y
will be a local maximizer, or a saddle point. Let us consider all possible situations.

(1). Consider the case f 0i(�y) 6= 0 for some i, 1 6 i 6 N . Without loss of
generality, let f 0i(�y) < 0. Then the two following situations are possible.

In the first case at some iteration q a new trial is carried out precisely at the
point �y. Therefore for all iterations s > q there exists a hypercube Dl, l = l(s),
containing the point �y and

�l
i � �yi > 0:

From Theorem 2, (4.15) and taking into account our assumption it follows that
�vl(�y; �

l) < 0. As a result,

R(l) < f(�y)

and from (4.3)–(4.4)

lim
s!1

�s(l)
! 0:

Since, in accordance with (3.16), the coordinates yi, 1 6 i 6 N , for subdividing
the hypercube Dt from (3.13) are used consecutively, so at some iteration p > 0
the point ŷ of a new trial is such that

f(ŷ) < f(�y): (4.26)

This inequality contradicts Theorem 3.
Now it is necessary to consider the second situation when we have �y 6= ys;� ,

s > 1; 1 6 � 6 2, i.e. trial points do not coincide with the limit point. Let
the point �y belong to a hypercube Dj , j = j(s), at the s-th iteration. If there
exists convergence to the point �y then (4.3)–(4.4) are true. Due to the fact that the
coordinates yi, 1 6 i 6 N , for subdividing the hypercube Dt from (3.13) are used
consecutively and taking account of our assumption, at some iteration q > 0 a new
trial is carried out at some point ŷ in which (4.26) holds. But this situation also
contradicts Theorem 3.

Now we can conclude that, if the point �y is not a local minimizer of f(y), it
should have at least f 0i(�y) = 0 for any i; 1 6 i 6 N .

(2). Consider the case when f 0i(�y) = 0 for any i, but the limit point �y is a local
maximizer. As �y is a limit point then there exists a subsequence of hypercubes such
that (4.3)–(4.4) are true. Therefore, at some iteration q > 0 a new trial is carried
out at some point ŷ such that (4.26) holds.
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As it contradicts Theorem 3, the limit point cannot be a local maximizer.
(3). Similarly, it can be shown that the situation when the point �y is a saddle

point is also impossible.
Having considered all this, we can conclude that �y must be a point of local

minimum of f(y) and the Theorem has been proved.

5. Numerical Results

In this Section we present some numerical experiments to study computational
behaviour of the proposed optimization techniques.

In the first series of experiments we use test optimization problems given in
Dixon and Szegö (1978). The first of these functions is the Goldstein and Price
(GP) function stated as follows:

F (y) = [1 + (y1 + y2 + 1)2(19 � 14y1 + 3y2
1 � 14y2 + 6y1y2 + 3y2

2)] �

�[30 + (2y1 � 3y2)
2(18 � 32y1 + 12y2

1 + 48y2 � 36y1y2 + 27y2
2)];

where �2 6 y1; y2 6 2. Level curves of this function are shown in Figure 4. As
it can be noted, f(y) has four local minima. The global minimum is at the point
(0;�1) with the value F (0;�1) = 3.

Initially to solve this problem we have set the method parameter r = 1:4, where
r is from (3.9), and the accuracy " = 0:1jjb � ajj, where " is from (3.19) and a; b
is from (1.2).

The Method using Derivative values for the Multi-dimensional case (MDM,
see Section 3) has made 66 iterations, that corresponds to 132 function and first
derivative value evaluations. The global minimum estimate is

z?s = 17:63; y?s = (�0:21;�1:11):

To estimate the global minimum more precisely the proposed method can be
applied in the mixed mode when purely global iterations are combined with local
steps around the current estimate of the optimum. According to this scheme (see
Strongin et al. (1988)) for each odd iteration the value of R(i) in (3.10) and (4.20)
are replaced with

R̂(i) = (R(i)�R�(i))=[((ui � z?s )(vi � z?s))
2 + 10�6mi]; (5.1)

where

R�(i) = min
16i6s

R(i);

and z?s is from (3.20), mi is from (3.11).
Making the second experiment we have set " = 0:01jjb � ajj and

r = 1:4 and the mixed scheme has been employed after 50 iteration MDM. In
this case the total number of iterations is 68 that corresponds to 136 function and
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Figure 4. Minimizing the Goldstein and Price function by MDM.

first derivative value evaluations. Trial points marked by bold dots are shown in
Figure 4. The global minimum estimate is

z?s = 3:77; y?s = (�0:045;�1:037):

Let us discuss how to set a value of the method parameter r from (3.9). As
it can be noted, the parameter is used to increase a numerical estimate of the
Lipschitz constant of the function to be minimized (see (3.9)). In this connection the
parameter can be regarded as a reliability coefficient of the method. Increasing the
value of the parameter can improve the probability of finding the global minimum
(because an adequate estimate of the Lipschitz constant is provided). On the other
hand, large values of r can be a reason for increasing the number of method
iterations implemented by the method until the stop condition is satisfied. To
illustrate the influence of the method parameter, the experiment with r = 2:0 and
" = 0:01jjb � ajj has been carried out (the mixed scheme has been employed
similarly). In this case the total number of iterations is 78, that corresponds to 156
function and first derivative value evaluations. The global minimum estimate is
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Figure 5. Minimizing the Goldstein and Price function by the modified version of MDM.

z?s = 3:0011; y?s = (�0:00031;�0:99851):

In practice the range from 1:5 to 3:0 can be recommended for the parameter values.
To solve the same problem the modified method MDM1 (see Section 4) with

r = 1:4 and " = 0:01jjb�ajj has made 96 iterations. The global minimum estimate
is

z?s = 3:03; y?s = (0:0042;�1:0067):

To compare both variants of the proposed method the trial points of MDM1 are
given in Figure 5.

Table 1 contains the results of minimizing the Goldstein and Price function
by other methods (these examples are taken from Breiman and Cutler (1993)).
Besides, Table 1 also gives the results of minimizing the Branin (RCOS) function:

f(y) = (y2 � (5:1=4�2)y2
1 + (5=�)y1 � 6)2 + (10 � 1=8�) cos y1 + 10;

where �5 6 y1 6 10, 0 6 y2 6 15.
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Table 1. Results of Minimizing Test Problems by some well-known
methods

Method Number of function evaluations
Function

GP RCOS

Törn 2499 1558
de Biase and Frontini 378 597
Price 2500 1600
Bremermann 300 160
Rinnooy Kan and Timmer 148 206
Snyman and Fatti 474 –
Vanderbilt and Louie 1186 557
Breiman and Cutler – 269
MDM 136 124
MDM1 192 148

The methodology of the computational experiments to compare numerical meth-
ods is discussed widely (see, for example, Jackson et al. (1991), Horst and Pardalos
(1995), etc.). The scheme used in the paper has been proposed in Grishagin (1978),
Strongin (1978). In the framework of this approach the method to be compared has
to be applied for solving a wide variety of test optimization problems. In perform-
ing these computations, the values of method parameters have to be fixed and the
problems have to be selected in a random way. As a result of these calculations a
number of pairs f(s; ps)g can be obtained , where s is the number of function and
first derivative evaluations and ps is the fraction of functions for which the global
minimum has been found with the given accuracy after this amount of optimization
iterations. These pairs are referred to as operational characteristics of the method
and they can be plotted as a broken line graph.

To estimate operational characteristics of the proposed method we used a set of
multiextremal functions, each of them stated as follows (see Strongin (1978)):

f(y) =

8><
>:
0
@ 7X

i=1

7X
j=1

�
Aijaij(y) +Bijbij(y)

�1A
2

+

+

0
@ 7X

i=1

7X
j=1

�
Cijaij(y)�Dijbij(y)

�1A
2
9>=
>;

1=2

; (5.2)

where

aij(y) = sin�iy1 sin�jy2;

bij(y) = cos�iy1 cos�jy2;



278 V. P. GERGEL

Figure 6. Minimizing the function from the second series of numerical experiments.

and 0 6 y1; y2 6 1. To explain the nature of these functions it should be noted that
the expressions (5.2) describe the stresses of a thin elastic plate under transverse
load. Level curves for one such function are shown in Figure 6.

The values Aij ; Bij ; Cij ; Dij for any function to be minimized are generated
by a random mechanism. A total of 50 functions has been chosen.

Within these experiments we use MDM with the method parameter r = 1:4 and
the accuracy " = 0:01jjb� ajj. The results of minimizing (trial points) for one of
the functions (5.2) are shown in Figure 6.

Each function has been minimized several times with different numbers of pure-
ly global steps when the formula (5.1) was not applied. Operational characteristics
that have been obtained are given in Figure 7. To compare the results, we present in
Figure 7 operational characteristics for some other methods (see Strongin (1978)),
viz.:

– the uniform grid (UG) algorithm;,
– the random or Monte-Carlo (MC) method;
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Figure 7. Operational characteristics for the global optimization methods.

– the multi-start (MS) local scheme of using the Nelder–Mead (1964) method
from various start points selected randomly in the search domain.

To mark the operational characteristics of the presented optimization techniques
we use the signs "+", "x" and "2" respectively.

As it can be expected, operational characteristics obtained for the method with
various parameter values are different. For instance, when we use r = 2:0 instead
of r = 1:4 the average number of optimization iterations is increased by approxi-
mately 10%.

Operational characteristics of MDM1 with " = 0:01jjb � ajj and
r = 1:4 are also presented in Figure 7 (the dashed broken line).

6. Conclusions

A new multi-dimensional method for solving unconstrained global optimization
problems with Lipschitzian first derivatives has been proposed in this paper. In
accordance with this method, the search domain is subdivided into a set of hyper-
cubes in the course of optimization. This partitioning is regulated by the decision
rule that provides evaluation of the "importance" of each generated hypercube and
selection of some partition element to perform the next iteration. Sufficient condi-
tions of global convergence have been established for two variants of the algorithm.
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The second modification has additional theoretical properties (see Theorem 4) but
the first one demonstrates a better numerical behaviour.

To examine computational behaviour, operational characteristics have been
calculated by solving a wide variety of test global optimization problems. As we
can conclude, the proposed method is quite competitive in comparison with the
other optimization techniques.
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